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LE’ITER TO THE EDITOR 

An exact solution for a spiral self-avoiding walk model on the 
triangular lattice 

G S Joyce and R Brak 
Physics Department, King’s College, Strand, London WCZR 2LS, UK 

Received 7 February 1985 

Abstr8ct. Exact results are derived for the number s, of spiral self-avoiding walks with n 
steps on the triangular lattice. In particular, a closed-form expression is presented for the 
generating function 

m 
S(x)= c S,X”. 

” = I  

This result is used to establish a complete asymptotic expansion for s, which is valid as 
n+m. 

Recently considerable interest has been shown in the spiral self-avoiding walk (SAW) 

model on the square lattice (Privman 1983, Blote and Hilhorst 1984, Whittington 1984, 
Klein et a1 1984, Redner and de Arcangelis 1984, Guttmann and Wormald 1984, Joyce 
1984). In particular, Blote and Hilhorst (1984) have established the exact generating 
function for the number s, of spiral SAWS with n steps, and have also proved that the 
asymptotic behaviour of s, is 

s, - An-Y exp(Anl/’), (1) 
as n + 00, where A = 2-’ ~ 3 - ~ / ~ 7 r ,  y =$and A = 2~/3’ / ’ .  Guttmann and Wormald (1984) 
have also independently obtained this asymptotic result, and in addition have demon- 
strated that the relative error in equation (1 )  is of O( l /dn) .  It was later shown by one 
of us (Joyce 1984) that the complete asymptotic expansion for s, has the form 

m 

s, -An-’ exp(An’/’) m / ~ ,  
m=O n 

as n + 00. An exact general formula for the coefficients U,, ( m  = 0, 1,2, .  . .) was also 
given. We see from these results that the behaviour of the spiral SAW model is strikingly 
diflerenr from the standard SAW model. 

Our aim in the present letter is to investigate the properties of a new spiral SAW 

model on the triangular lattice. In this model each step in the SAW must either point 
in the same direction as the previous step or in a direction rotated anticlockwise by 
an angle 2 ~ / 3  with respect to it. (Note that the first step of each walk is assumed to 
be the lattice vector el shown in figure 1.) The total number of n-step spiral SAWS of 
this type is defined to be s,. For this triungulur lattice model we shall give an exuct 
expression for the basic generating function 

m 

S(x) = s,xn 
n = l  

(3) 
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Figure 1. Lattice vectors e,, e2, e,. 

in terms of the standard generating function 
m m 

a x ) =  n ( l + x " ) =  c q ( n ) x " ,  
n = l  n=O 

(4) 

where q ( n )  is the number of partitions of n into distinct parts (see Andrews 1976, 
p 5 ) .  We shall also derive a complete asymptotic expansion for s, as n + 03 which has 
the same form as the expansion (2) for the square lattice model. 

An n-step spiral SAW is made up of a sequence of L line segments. The number 
of single steps in the ith segment is denoted by mi, where i = 1,2, . . . L and m ,  + m2+ 
. . , + mL = n. If the numbers m , ,  . . . , mL satisfy the inequalities 1 S m ,  < m, <. . . < 
m L - , ,  m L z  1, then the walk is said to be an outward spiral SAW (see figure 2 ( a ) ) .  

la1 
w \  

I b )  

Figure 2. (a) An outward spiral SAW with segment lengths m ,  . . . ms. ( 6 )  A trapped spiral 
SAW which consists of an outward spiral C and an inward spiral c. The broken dividing 
line intersects the dividing segment w. 

(Note that every spiral SAW with L= 1 or L= 2 is an outward spiral walk.) When a 
spiral SAW with L 2 3 does not satisfy all the inequalities for m , ,  . . . , mL it is called a 
trapped spiral SAW. The structure of any spiral SAW can be analysed using the idea 
of a dividing line (Blote and Hilhorst 1984). This is a line parallel to one of the lattice 
vectors e,, e2 and e3 (see figure 1) which intersects one and only one segment of the 
walk. An intersected segment of this type which is parallel to the lattice vector ei is 
called a diuiding segment oi (see figure 2 ( b ) ) .  It is readily seen that the following 
properties are valid. 

(i)  Each spiral SAW has either a single dividing segment or two adjacent dividing 
segments. 

(ii) In general, a spiral SAW consists of an outward spiral walk C linked by a 
dividing segment to an inward spiral walk c (see figure 2(6)). If there are two dividing 
segments this decomposition is clearly not unique. (Note that for a certain subset of 
spiral SAWS the spiral C will be absent, while for some outward spiral SAWS will 
not occur.) 
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We now consider the generating function 
m 

S*(x)= SZX",  
f l = l  

where sx is the number of n-step outward spiral SAWS. To evaluate S*(x) we use the 
procedure described by Blote and Hilhorst (1984). In this manner we obtain 

where the prime on the multiple summation indicates that the integers ml,  . . . , mL-l 
satisfy the inequalities 1 S m ,  < m2 < . . . < mL-I. We can decouple the restricted summa- 
tions by introducing the variables ti = mi - mi-, ,  ( i  = 2,3, . . . , L- 1). The final result is 

where go( x) = 1, and 

The application of the Euler identity (see Andrews 1976, p 19) 

with z = 1, to equation (7) gives the basic result 

x w  
1 - x  f l = l  

S*(x)=- n ( I+x" ) .  

It follows from equations (4), (5) and (10) that 

and 

S X  = y' q ( k ) ,  (12) 
k = O  

where n 3 1. The recurrence relation ( 1  1) can be used to calculate the values of s: 
since q ( n )  has been tabulated for n s 4 0 0  by Watson (1937). 

Asymptotic representations for sx as n+w can be derived by first analysing the 
behaviour of S*(x) in the neighbourhood of its dominant singularity x = 1. We find 

s*(x) = 2-''ZCexp(u) - I]-' exp[.rr2/ 12u)  +&U], (13) 

as x + 1 -, where U = In( l /x) .  (The generating function S*(x) has weaker singularities 
which form a natural boundary on the circle 1x1 = 1.) Next we substitute the standard 
formula 
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in equation (13), where B, is a Bernoulli number. If the asymptotic techniques 
developed by Wright (1933) are applied to each term in the resulting series we eventually 
obtain the asymptotic expansion 

as n +CO, where 

In equation (16) the symbol (v, r )  is defined as 

(r2 1) (17) 
1 

(v, r )= - (4~ ' -1 ) (4~ ' -3~) .  . .[4v'-(2r-1)2], 
22rr! 

with (v, 0) = 1. The values of the first few coefficients a, are 

ao= 1, 

U ,  = -(J3/ 1 4 4 ~ ) (  11 7~'- 18) -0.346 746 2424, 
(18) 

When n = 50 the truncated expansion ( 15) gives sfo 27 924.92 which agrees well with 
the exact value sfo= 279 25. 

In order to evaluate the complete generating function S(x) we define S( 1,12,3 1 ; x) 
to be the generating function for the number of all n-step spiral SAWS which have just 
one dividing segment wI, or two dividing segments (wI, w z ) ,  or two dividing segments 
( w 3 ,  0,). A similar definition holds for the generating function S(2,12,23; x) and 
S(3,31,23; x). We also define S(12; x), S(23; x) and S(31; x) to be the generating 
functions for the number of n-step spiral SAWS which have two dividing segments 
(wI,  w z ) ,  ( w z ,  w 3 )  and ( w 3 ,  wI) respectively. From the principle of inclusion and 
exclusion we readily see that 

S(X) = S( 1,12,31; x)  + S(2,12,23; x)  

aZ=(1/13824w2)(2916+ 1188.rr'+73~~)=0.1594280738. 

+ S(3,3 1,23 ; x)  - S( 12; x)  - s(23 ; x)  - S(3 1 ; x). (19) 
The evaluation of the various S-generating functions in equation ( 19) involves restricted 
summations of the type (6) over all possible configurations of the outward and inward 
spirals C and respectively, and over all allowed lengths of the dividing segments. 
Unfortunately, these calculations are of considerable complexity and in this letter we 
can only give the final expression 

x4( 1 - X 3 ) S ( X )  = -( 1 + 2x - 2x3 - x4+ xs + x6- x') + 2( 1 - x')( 1 + x - x2-  2x3- x4+ x5) 

(20) 
OD m 

x n ( l+x") - ( l -x~)* (1 -x2-2x3)  n (l+X")Z. 
n = l  n = l  

The generating function T(x) for the number of n-step trapped spiral SAWS is clearly 
given by S( x)  - S*( x). 

If we substitute equations (3), (4) and the generating function 
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in equation (20) we obtain the relation 

s,+3- s, = 2q2(n)+ q2(n + 1) -4q2(n +2)  -3q2(n +3)+2q2(n +4)  

+3q2(n + 5 )  - q2(n +7)  -2q(n)+2q(n + 1)+6q(n +2) 

- 6 q ( n  +4) -4q(n + 5 )  +2q(n +6)  + 2 q ( n  +7),  (22) 

where n 2 1, with the initial conditions sI = 1, s2 = 2 and s3 = 3. The recurrence relation 
(22) has been used to calculate the exact values of s, for n s 400. In table 1 we list 
the values of s, for n c 60. In order to provide a check on the basic result (20) a direct 
computer enumeration has been carried out for all spiral SAWS with ns60. It was 
found that the values of s, obtained in this manner were in complete agreement with 
the results in table 1. Exact closed-form expressions for q( n) and q2( n )  can be derived 
by applying the methods of Hardy and Ramanujan (1918) and Rademacher (1937) to 
the generating functions (4) and (21) respectively (see Hua 1942, and Joyce unpublished 
work). 

Table 1. Values of s, for a spiral SAW on the triangular lattice. 

n S" n S" n sn 

1 1 21 945 41 
2 2 22 1195 42 
3 3 23 1513 43 
4 5 24 I882 44 
5 8 25 2345 45 
6 11 26 2927 46 
7 17 27 3608 47 
8 25 28 4446 48 
9 33 29 5483 49 

10 47 30 6701 50 
11  67 31 8180 51 
12 87 32 9986 52 
13 1 I7 33 12 109 53 
14 160 34 14664 54 
15 207 35 17 750 55 
16 270 36 21 371 56 
17 356 37 25 694 57 
18 455 38 30 872 58 
19 584 39 36 937 59 
20 75 1 40 44 127 60 

52 672 
62 658 
74 429 
88 327 

104 524 
123 518 
145 819 
171 737 
201 990 
237 332 
278 289 
325 901 
381 278 
445 272 
519 381 
605 230 
704 170 
818 357 
950 150 

1101 634 

An asymptotic expansion for s, as n + 00 can be derived from equation (20) by 
following the procedure used to obtain expansion (15) for sx. The final result is 

(23) 
U:, m 

s, - A'n-y' exp(h'n1/2) m / ~ ,  
m = o  n 

as n+m, where A'=9-' ~ 6 ' / ~ 7 r ,  y ' = i ,  A ' = 2 ~ / 6 ' ~ ~ ,  
p + t  2p+21 p + 1  ,:,,( -- ;I)" y'(-U 7r Bl(p+t+2 ,m-p- t )  

,=0 p = o  ( ~ + 2 ) ! t ! ( 3 6 ) ~  

~ [ 2 +  ( 13)p+2 - 4(25)p+2 - 3(37)p+2 + 2(49)p+2+3(61)pf2- (85)p+2], (24) 
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and (v, r )  is defined in equation (17). The values of the first few coefficients U ;  are 

U & =  1, 

U {  = - ( 5 J 6 / 1 4 4 ~ ) ( 2 7 + 2 ~ ~ ) - - 1 . 2 6 5 3 6 1  5137, (25) 

~ ~ = ( 7 / 6 9 1 2 ~ ~ ) ( 1 2 1 5 + 9 0 0 ~ ~ - 4 0 4 ~ ~ )  2: -3.001 953 7875. 

It can be shown that the relative error in formula (23) is the order of Bn1l2 exp(-cYn”2), 
as n -j a, where B = -3’” x 2 - ‘ / 4 ~ - 1  and Q = ~ ( 2 ” ~ -  1)/3’’2. When n = 200 the trun- 
cated expansion (23) yields s 2 0 0 2  3.703 18 x 10”which is consistent with the exact value 

~ 2 0 0  = 3702 6 15 665 774. (26) 

It is interesting to note that the dominant asymptotic expansion (23) has the same 
structure as the corresponding result (2) for the square lattice, but with different values 
for the constants A, y and A. 

Finally we note that it is possible to define various other constrained SAW models 
on the triangular lattice. For example, we can have a spiral SAW model in which the 
possible anticlockwise rotation angles for the step directions are (0, ~ / 3 ) .  One could 
also consider a mixed spiral SAW model in which the possible rotation angles for the 
step directions are (0, ~ / 3 , 2 ~ / 3 ) .  

We are grateful to Dr D S Gaunt for his continued interest and encouragement in this 
work, and to Dr A J Guttmann for helpful correspondence. We should also like to 
thank Mr A L J Wells for carrying out an independent numerical calculation of s, for 
n S 30. These results provided us with an extremely useful check on the values in table 
1. One of us (RB) is grateful to the SERC for the award of a research studentship. 

Note added in proof: In a recent letter Lin (1985) has also obtained the result (20) for the generating function 
S(x). However, only the leading-order terms in the asymptotic expansions (15) and (23) are given in this work. 
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